
MATH 8100: Linear Optimization

polyhedron: the intersection of a finite collection of half-spaces and hyperpla-
nes
polytope: a bounded polyhedron

Note: The feasible set of any LP is a polyhedron

{x ∈ Rn|Ax ≥ b}

Note: Any LP can be described as

min cTx

Ax ≥ b

extreme point: Given a convex set S, a point x ∈ S is an extreme point
if there does NOT exist two DISTINCT points y, z ∈ S and λ ∈ (0, 1) s.t.
x = λy + (1− λ)z
BFS: x̄ is BFS if x̄ ∈ P and is a BS
BS: x̄ is a BS if

◦ satisfies all equality constraints

◦ at least n of the active constraints of P at x̄ are linearly independent (i.e.
coefficients of variables are LI)

Note: x̄ is a BS iff rank(AI) = n where I are the indices of active constraints
Theorem: P ∈ Rn a polyhedron. x is an extreme point of P ⇐⇒ x is a BFS.
Corollary: Given a finite number of inequality constraints, there can only be
a finite number of BFS.

Extreme Points and BFS

Note: P ∈ Rn contains a line if

∃x ∈ P, d ∈ Rn \ {0} s.t. x+ λd ∈ P , ∀λ ∈ R

Theorem: If a nonempty polyhedron does NOT contain a lines ⇐⇒ it has at
least one extreme point.
Corollary: Any polytope and any polyhedron in the form of either

P = {x ∈ Rn|Ax ≥ b, x ≥ 0} or Q = {x ∈ Rn|Ax = b, x ≥ 0}

have at least one extreme point
Theorem: Consider the LP min cTx s.t. x ∈ P where P ⊆ Rn is a polyhedron.
If the LP is solvable and P has at least one extreme point, then there exists an
optimal solution which is an extreme point.
Note: An extreme point is optimal, but not all optimal solutions are extreme
points

extreme point at (0,0)

opt sols

Theorem: Consider the LP min cTx s.t. x ∈ P where P ∈ Rn is a polyhedron
that has at least one extreme point. Then, either the LP is unbounded below or
there exists an extremem point that is optimal.
Fundamental Theorem of LP: Suppose that P is a nonempty polyhedron s.t.
P ∈ {x ∈ Rn|x ≥ 0}. Consider the LP min cTx s.t. x ∈ P . If the LP is solvable,
then there exists an extreme point in P that is an optimal solution to the LP.
Note: The Fundamental Theorem of LP require that P ⊆ Rn

+. So, P = {x|Ax ≥
b} may not be suitable. That’s why we do standard form.

Existance and Optimality of Extreme Points
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Standard Form of a Polyhedra: S = {x|Ax = b, x ≥ 0}
Standard Form LP:

min cTx

Ax = b

x ≥ 0

• Case 1: Max Problem

1. change max to −min

2. negative cTx to become −cTx

• Case 2: Inequality Constraints

1. For ≤, add a slack variable.

x1 + x2 ≤ 10

x1 + x2 + x3 = 10;x3 ≥ 0

2. For ≥, first negate entire inequality, then add slack variable

x1 + x2 ≥ 8

−x1 − x2 ≤ 8

−x1 − x2 + x3 = 8;x3 ≥ 0

• Case 3: Free variable (not listed as xi ≥ 0)

1. For free variable, xi, let xi = x+i − x
−
i

2. Replace xi by x+i − x
−
i where x+i , x

−
i ≥ 0

Basic Solutions in Standard Form: Suppose A ∈ Rm×n has full row rank,
and P = {x ∈ Rn|Ax = b, x ≥ 0} is a nonempty polyhedron. x is a BS ⇐⇒ x
solves Ax = b and there exists column indicies B(1), · · · , B(m) s.t.

• The columns AB(1), · · · , AB(m) of A are LI

• If j 6∈ {B(1), · · · , B(m)}, then xj = 0

basic/nonbasic variables: For a basic solution, variables xB(1), · · · , xB(m) are
basic variables, the remainin are nonbasic variables.
basic columns: The columns AB(1), · · · , AB(m) are the basic columns and form
a basis in Rm.
set of basic indices: {B(1), · · · , B(m)}

Polyhedra in Standard Form

Note:

• nonbasic variables must be 0. basic variables can be 0.

• Ax = b can be written as
[
B N

] [xB
xN

]
= b;

where B =
[
AB(1) · · · AB(m)

]
xM =

[
xB(1) · · · xB(m)

]T
; and xN = 0

• BxB = b =⇒ xB = B−1b

• If x is a BFA, then x ≥ 0 and xB = B−1b ≥ 0

Polyhedra in Standard Form Cont.

A standard form LP can have the KKT conditions applied to it. KKT is neces-
sary (LCQ) and sufficient (convex) for optimality.

(PF ) xB = B−1b ≥ 0

xN = 0

(DF ) λB , λN ≥ 0

cb − λB +BTµ = 0

cN − λN +NTµ = 0

(CS) λixi = 0; i = 1, · · · , n

Theorem: Suppose that x is a BFS with basis matrix B and define c̄ by

c̄T = cT − cTBB−1A

• if c̄ ≥ 0, then x is optimal

• if x is optimal with positive basic variables (xB > 0), then c̄ ≥ 0

reduced cost: c̄ is the vector of reduced cost. for each j, c̄j is the reduced cost
of xj .

Note: c̄ =

[
cB
CN

]
−
[
BT

NT

]
(BT )−1cB

Note: If xj is a basic variable, c̄j = 0
optimal: A basic matrix B is said to be optimal if B−1b ≥ 0 and c̄ ≥ 0 where
c̄ is the reduced cost.
basic direction:

dB = −B−1Aj

dj = 1

di = 0 (for all nonbasic indices i 6= j)

Optimality Conditions of Extreme Points
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-d c
b A

canoncial form:

• b ≥ 0

• A contains an identity submatrix

• the coefficients corresponding to I are all 0.

Imporant Notes:

• The variables corresponding to the identity columns with 0’s as coefficients
are your basic variables

• If any b < 0, then your solution is NOT feasible

• If any c < 0, then your solution is NOT optimal

• You objective value is your negative of your left corner value

Simplex Rule: How to select a pivot to decrease the objective value

1. Pick column with ck < 0

2. Pick row by the minimum ratio test: the smallest ratio of b value over a
value s.t. the a value is postive

bn
ank

= min{ bi
aik
|aik > 0}

The Simplex Method

If any j s.t. c̄j = cj − cTBB−1Aj < 0 at a BFS x, then we have direction d:

dB = −B−1Aj

dj = 1

di = 0 (for all nonbasic indices i 6= j)

For this d, we have that Ad = 0 and cT d < 0 and x + θd is feasible when θ is
small and cT (x+ θd) < CTx. So, the simplex tableau is

−cTBB−1b c̄T = cT − cTBB−1A
B−1b B−1A

Theorem: Suppose that x is a BFS of a standard form LP with reduced cost
c̄j = cj − CT

BB
−1A < 0. Consider y = x+ θ∗d where

dB = −B−1Aj

dj = 1

di = 0 (for all nonbasic indices i 6= j)

and θ∗ = −xB(`)

dB`
= min

i=1,··· ,m s.t. dB(i)<0

(
−xB(i)

dB(i)

)
then y is a BFS associated with

the basic matrix B̄ =
[
AB(1) · · · AB(`−1) AB(j) AB(`+1) · · · AB(m)

]
and

the basic indices {B̄(1), · · · , B̄(m)} where

B̄(i) =

{
B(i) i 6= `

j i = j

and variable xB(`) leaves the basis and xj enters the basis.
Note: θ∗ is basically the minimum ratio test.
degenerate LP: A BFS has a value of 0.

Development of the Simplex Method
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Artificial Variables:

1. First, add a as many columns to the end of your tableau as you have ele-
ments in your b vector. They will be identity in the meat of the tableau
with 1’s in the coefficient row.

2. do row reductions to get the coefficients for artificial variables to 0

3. do simplex method.

Note: If the original problem has a feasible solution x̄, the artificial problem
has an optimal solution (x∗, y∗) = (x̄, 0).
Note: If (x∗, y∗) is an optimal solution to the artificial problem with optimal
value 0, then y∗ = 0 and hence x∗ is feasible for the original problem.
Theorem: That original problem is feasible iff its artificial problem has optimal
value 0.
Note:

• After solving artificial problem, it optimal value is NOT 0 =⇒ infeasible

• after getting into canonical form: if column of all negatives =⇒ unboun-
ded.

Big M Method:

1. Add artificial variables but make each coefficient M instead of 1.

2. do row reductions to get the coefficients for artificial variables to 0

3. do simplex method

Note: The artificial problem will never be unbounded. It could be infeasible,
but never unbounded.

Finding an Initial BFS

General Primal:

min cTx

s.t aTi x ≥ bi, mi ∈M1

aTi x ≤ bi, i ∈M2

aTi x = bi, i ∈M3

xj ≥ 0, j ∈ N1

xj ≤ 0, j ∈ N2

xj free j ∈ N3

General Dual:

max bT p

s.t. pi ≥ 0, i ∈M1

i ≤ 0, i ∈M2

pi = 0, i ∈M3

AT
j p ≤ cj , j ∈ N1

AT
j p ≥ cj , j ∈ N2

AT
j p = cj , j ∈ N3

Note:

primal min cTx max bT y dual
≥ bi ≥ 0

A constraints ≤ bi ≤ 0 variables
= bi free
≥ 0 ≤ cj

AT variables ≤ 0 ≥ cj constraints
free = cj

Note: The dual of the dual is the primal.

Theorem: If we transform the dual into an equivalent minimization problem,
and then form its dual, we obtain a problem equivalent to the original primal
problem.

Weak Duality Theorem: If x and p are feasible solutions to primal and dual
LPs, respectively, then cT p ≤ cTx

Corollary: If the primal LP is unbounded, then the dual LP is infeasible.

Corollary: If x and p are feasible solutions to the primal and dual LPs respec-
tively, and bT p = cTx, then x and p are optimal for primal and dual respectively.

Duality Theory in LP
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Strong Duality Theorem: If a LP is solvable and has an optimal solution,
then so is the dual, and optimal values of both problems are equal.

primal
finite optimum unbounded infeasible

finite optimum × ×
dual unbounded × ×

infeasible ×

Complementary Slackness Theorem: If x and p are feasible for the primal
and dual problems respectively, then they are optimal for the respective problems
iff

pi(a
T
i x− b)i) = 0, Ai

(ci −AT
j p)xj = 0, Aj

Recall the primal and dual LPs for this theorem are:

min cTx

s.t. Ax ≥ b
x ≥ 0

max bT p

s.t. AT p ≤ c
p ≥ 0

Strong Duality in LP Continued

Dual Simplex Method: With the primal problem’s tableau (P ) with c ≥ 0:

1. Select h s.t. bh < 0.

• If b ≥ 0 and (P ) is in canonical form, then we have an optimal solu-
tion.

2. If −ahj ≤ 0 for all j, (D) is unbounded and hence (P ) is infeasible.

3. Select k s.t ck
ahk

= max{ cj
ahj
|ahj < 0}

4. Pivot at ahk to 1.

Dual Simplex Method

Goal: Analyze how an optimal solution changes with certain changes in the LP.
Here, our starting tableau is M and our original optimal tableau is M∗.
Changes in available resources (b)

1. Find the Q (pivot matrix) such that M∗ = QM

• Q’s first column is the vector e1

• Q remaining columns are the columns of the slack variables in M∗.

2. Change the optimval value and b column in the optimal tableau to Q times
the first column in M with the change in b.

3. If not optimal, use dual simplex method.

Changes is selling price (c)

1. If the change in price is q, we simply replace the corresponding column in
the M∗ tableau to Q times the corresponding column from M with the
change in price subtracted

2. Perform pivots to get in canonical form.

3. Determine optimality conditions

Adding new products or constraints

1. Adding a new column, n, to M means your add Qn to M∗.

2. Apply dual-simplex method.

Local Sensitivity Analysis
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