MATH 8100: Linear Optimization

Extreme Points and BFS N\ Existance and Optimality of Extreme Points

the intersection of a finite collection of half-spaces and hyperpla- Note: P € R™ contains a line if

nes
a bounded polyhedron Jr e P,de R*"\ {0} st. t+ AMde P,VAeR

Theorem: If a nonempty polyhedron does NOT contain a lines <= it has at

Note: The feasible set of any LP is a polyhedron Jeast one extreme point.

{z € R"|Az > b} Corollary: Any polytope and any polyhedron in the form of either
Note: Any LP can be described as P={zeR"Az >bx >0} or Q={zeR"Az=0b,z>0}
.7 have at least one extreme point
min ¢' x

Theorem: Consider the LP minc”z s.t. £ € P where P C R” is a polyhedron.
If the LP is solvable and P has at least one extreme point, then there exists an
optimal solution which is an extreme point.

Note: An extreme point is optimal, but not all optimal solutions are extreme
points

Ax >Db

Given a convex set S, a point x € S is an extreme point
if there does NOT exist two DISTINCT points y,z € S and A € (0,1) s.t.
r=Ay+(1-XN)z
Z is BFS if Z € P and is a BS
Z is a BS if
opt sols
o satisfies all equality constraints

o at least n of the active constraints of P at T are linearly independent (i.e.

coefficients of variables are LI) extreme point at (0,0)

Note: 7 is a BS iff rank(A;) = n where I are the indices of active constraints . . .
Theorem: P € R™ a polyhedron.  is an extreme point of P <=  is a BFS. Theorem: Consider the LP minc’ z s.t. x '6 P where P € R” is a polyhedron
Corollary: Given a finite number of inequality constraints, there can only be that has at least one extreme point. Then, either the LP is unbounded below or
a finite number of BFS. there exists an extremem point that is optimal.

Fundamental Theorem of LP: Suppose that P is a nonempty polyhedron s.t.
L ) P € {x € R"|z > 0}. Consider the LP minc’z s.t. € P. If the LP is solvable,
then there exists an extreme point in P that is an optimal solution to the LP.
Note: The Fundamental Theorem of LP require that P C R”. So, P = {z|Az >
b} may not be suitable. That’s why we do standard form.




Polyhedra in Standard Form

S ={z|Az = b,z > 0}

min ¢’z

Ax =»
x>0
e Case 1: Max Problem

1. change max to —min

2. negative ¢’z to become —c’x

e Case 2: Inequality Constraints

1. For <, add a slack variable.

r1+ 22 <10
T+ 2o+ 23 =10;23 >0

2. For >, first negate entire inequality, then add slack variable

1+ a9 > 8
—(L’l—fL'QSS

7I17$2+$3:8;I320

e Case 3: Free variable (not listed as z; > 0)

1. For free variable, z;, let z; = x] — x;

2. Replace z; by rj‘ — x; where .rj', z; >0

Basic Solutions in Standard Form: Suppose A € R™*™ has full row rank,
and P = {z € R"*|Az = b,z > 0} is a nonempty polyhedron. z is a BS <= =«

solves Az = b and there exists column indicies B(1),--- , B(m) s.t.
e The columns Ap(yy,- -+, Ag(m) of A are LI
o If jZ{B(1),---,B(m)}, thenz; =0
For a basic solution, variables xp(1), - , TB(m) are
basic variables, the remainin are nonbasic variables.
The columns Apg(1), -+, Ap(m) are the basic columns and form

a basis in R™.
{B(1),---,B(m)}

Polyhedra in Standard Form Cont.

Note:

e nonbasic variables must be 0. basic variables can be 0.

e Az = b can be written as [B N] BB} = b;
N

where B = [AB(U s AB(m)}
T

Ty = [333(1) xB(m)] ;and zy =0

e Brp=b = zp=B"'

e If xis a BFA, then 2 > 0 and z3 = B~'6 > 0

\.

Optimality Conditions of Extreme Points

A standard form LP can have the KKT conditions applied to it. KKT is neces-
sary (LCQ) and sufficient (convex) for optimality.
(PF) xg =B >0
N = 0
(DF) AB, AN >0
a—Ap+BTu=0
CN — AN + NTu =0
(CS) Nizi=0;i=1,---,n
Theorem: Suppose that x is a BFS with basis matrix B and define ¢ by
=T A
e if ¢ > 0, then z is optimal
e if 2 is optimal with positive basic variables (zp > 0), then ¢ > 0
¢ is the vector of reduced cost. for each j, ¢; is the reduced cost
of Xj-
.a_ |¢B| _ BT Ty—1
Note: ¢ = |:ON [NT (BY)"'ce
Note: If z; is a basic variable, ¢; = 0

A basic matrix B is said to be optimal if B~'b > 0 and ¢ > 0 where
¢ is the reduced cost.

dp = 7B71Aj
dj =1
d; =0 (for all nonbasic indices 7 # j)




The Simplex Method

e b>0

e A contains an identity submatrix

e the coeflicients corresponding to I are all 0.
Imporant Notes:

e The variables corresponding to the identity columns with 0’s as coeflicients
are your basic variables

e If any b < 0, then your solution is NOT feasible

e If any ¢ < 0, then your solution is NOT optimal

e You objective value is your negative of your left corner value
Simplex Rule: How to select a pivot to decrease the objective value

1. Pick column with ¢; < 0

2. Pick row by the minimum ratio test: the smallest ratio of b value over a
value s.t. the a value is postive

= min{ aiik

Qi > 0}

Development of the Simplex Method

If any j s.t. ¢; = ¢; — c5B71A; < 0 at a BFS z, then we have direction d:
dp =—-B'A;
d; =1
d; =0 (for all nonbasic indices ¢ # j)

For this d, we have that Ad = 0 and ¢’d < 0 and = + 6d is feasible when 6 is
small and ¢'(z + 0d) < CTz. So, the simplex tableau is

—cEB~ b | e = —cEB1A
B~1b B~1A

Theorem: Suppose that = is a BFS of a standard form LP with reduced cost
¢j =c; — CEB™1A < 0. Consider y = x + 6*d where

dp =—-B'A;
dj=1
d; =0 (for all nonbasic indices i # j)
and 0* = —% = min (—%) then y is a BF'S associated with
By i=1,--,m s.t. dp(i)<o B(4)
the basic matrix B = [AB(l) < App-1 AG) AB+) AB(m)] and

the basic indices {B(1),--- , B(m)} where

and variable gy leaves the basis and z; enters the basis.
Note: 6* is basically the minimum ratio test.
A BFS has a value of 0.




Finding an Initial BFS

Artificial Variables:

1. First, add a as many columns to the end of your tableau as you have ele-
ments in your b vector. They will be identity in the meat of the tableau
with 1’s in the coefficient row.

2. do row reductions to get the coefficients for artificial variables to 0
3. do simplex method.

Note: If the original problem has a feasible solution Z, the artificial problem
has an optimal solution (z*,y*) = (z,0).

Note: If (z*,y*) is an optimal solution to the artificial problem with optimal
value 0, then y* = 0 and hence z* is feasible for the original problem.
Theorem: That original problem is feasible iff its artificial problem has optimal
value 0.

Note:

e After solving artificial problem, it optimal value is NOT 0 = infeasible

e after getting into canonical form: if column of all negatives = unboun-
ded.

Big M Method:
1. Add artificial variables but make each coefficient M instead of 1.
2. do row reductions to get the coefficients for artificial variables to 0
3. do simplex method

Note: The artificial problem will never be unbounded. It could be infeasible,
but never unbounded.

Duality Theory in LP

General Primal:

min ¢’z

s.t aiTzzb,-, mi € M,
a?wgbi, i € Mo
To=b;, ic Ms
z; >0, jeN;
2; <0, j€ Ny
x; free j € N3

a

General Dual:

max blp

s.t. p; >0, i€ M
4 <0, 1€ M,y
pi=0, i€ M;
Afpgcj, Jj€N
Alp>cj, jEN,

A?p:Cj, jGNg

Note:
primal minc’z | maxbTy dual

> b; >0

A | constraints < b; <0 variables
=b; free
2 0 S Cj

AT variables <0 > ¢ constraints
free =cj

Note: The dual of the dual is the primal.
Theorem: If we transform the dual into an equivalent minimization problem,
and then form its dual, we obtain a problem equivalent to the original primal

problem.

Weak Duality Theorem: If x and p are feasible solutions to primal and dual
LPs, respectively, then ¢Tp < ¢Tz

Corollary: If the primal LP is unbounded, then the dual LP is infeasible.

Corollary: If x and p are feasible solutions to the primal and dual LPs respec-
tively, and b7p = ¢z, then x and p are optimal for primal and dual respectively.




Strong Duality in LP Continued

Strong Duality Theorem: If a LP is solvable and has an optimal solution,
then so is the dual, and optimal values of both problems are equal.

primal
finite optimum unbounded infeasible
finite optimum ~ X X
dual unbounded X X ~
infeasible X ~ ~

Complementary Slackness Theorem: If z and p are feasible for the primal
and dual problems respectively, then they are optimal for the respective problems

iff
pi(alxz —b)i) =0, A;
(ci — Ajp)z; =0, A

Recall the primal and dual LPs for this theorem are:

min ¢’z

st. Az >b
x>0

max blp
s.t. ATp <c
p=0

\.

Local Sensitivity Analysis

Goal: Analyze how an optimal solution changes with certain changes in the LP.
Here, our starting tableau is M and our original optimal tableau is M*.
Changes in available resources (b)

1. Find the @ (pivot matrix) such that M* = QM

e (J’s first column is the vector e;

e () remaining columns are the columns of the slack variables in M™.

2. Change the optimval value and b column in the optimal tableau to @) times
the first column in M with the change in b.

3. If not optimal, use dual simplex method.
Changes is selling price (c¢)

1. If the change in price is g, we simply replace the corresponding column in
the M* tableau to @ times the corresponding column from M with the
change in price subtracted

2. Perform pivots to get in canonical form.
3. Determine optimality conditions
Adding new products or constraints
1. Adding a new column, n, to M means your add Qn to M*.

2. Apply dual-simplex method.

Dual Simplex Method

Dual Simplex Method: With the primal problem’s tableau (P) with ¢ > 0:
1. Select h s.t. by < 0.

e If b > 0 and (P) is in canonical form, then we have an optimal solu-
tion.

2. If —ap; <0 for all 7, (D) is unbounded and hence (P) is infeasible.
3. Select k s.t ;ﬁ = maX{;Tjj‘ahj <0}

4. Pivot at apy to 1.




